Integrated Nutrient Management in Soybean -Wheat Cropping System

A.D. Tambe, U.S. Surve and J.S. Kumbhar

Department of Agronomy, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth Rahuri 413 722 (Maharastra) E-mail: atavitambe04@gmail.com

Abstract—The experiment was conducted at IFS, MPKV Rahuri. The soybean grain equivalent yield in respect of the system in T5 was significantly higher than rest of the treatments except T6.Among different Sources of organics, substitution of 50% N through FYM recorded significantly higher system productivity(5458 kg ha-1)in terms of soybean grain equivalent yield. The total nitrogen uptake (210 kg ha-1),total phosphorous uptake (35 kg ha -1),total potassium uptake (90 kg ha -1)of soybean was recorded significantly highest in the treatment T5(100% recommended NPK dose though Fertilizers)which was at par with T6.The highest gross monetary returns, net monetary with B: C ratio was recorded in the treatment of 100% RDF in both the seasons which was closely followed by treatment T6(50% N through FYM+50% RDF followed by 75% RDF during Rabi).

Keywords: Soybean, wheat, integrated nutrient management, recommended dose of fertilizer, cropping system, FYM, WCS, and GM.

1. INTRODUCTION

Integrated Nutrient management refers to the maintenance of soil fertility and plant nutrient supply at an optimum level for sustaining the benefits manner. The object of Integrated Nutrient management (INM) is to integrate the use of natural and man- made soil nutrients to increase crop productivity and preserve soil production for future generations. Fertility of soil is very important for future generations. Fertility of soil is very important for obtaining optimum production of crops.

Organic matter induces life into the soil and sustains biological life. in order to attains sustained production of crops, recycling of organic matter in the soil should become a regular feature of modern agriculture, the almost complete reliance on the use of chemical fertilizer, ignoring bio organic material has in the course of time brought in in focus a number of problem such as wide spread deficiencies of nutrients and decline in productivity of crops and increasing environmental pollution.

The long-term use of inorganic fertilizers without organic supplements damages the soil physical, chemical and biological properties and cause environmental pollution. organic manures act not only as a source of nutrients and organic matter, but also increase size, biodiversity and activity of the microbial population in soil, influence structure, nutrients get turnover and many other changes related to physical, chemical and biological parameters of the soil (Albiach et al 2000)Use of organic manures alone or in combination of chemical fertilizers will help to improve physics-chemical properties of the soils, Organic manures provide a good substrate for the growth of microorganisms and maintain a favorable nutritional balance and soil physical properties. one such strategy to maintain soil fertility for sustainable production of soybean is through judicious use of fertilizer (Bobade et al 1998). It has also been brought out that the use of organic manures in integration with fertilizers meets the need of micronutrients of soybean (Joshi et al 2000)(3) Therefore keeping this in view an investigation entitled " Effect of Integrated Nutrient management on productivity Nutrient uptake Soil properties and Economics of soybean wheat cropping system in Western Maharashtra."

2. MATERIALS AND METHODS

An experiment was conducted at IFSRP, MPKV Rahuri to study the Integrated Nutrient management in soybean wheat Cropping system during 2017-18 with four replications. Twelve treatments with randomized block design were used for this study. The experimental and treatment details are given below.

Treatment	Kharif	Rabi
T1	control	Control
T2	50% RDF	50% RDF
T3	50% RDF	100% RDF
T4	75% RDF	75% RDF
T5	100%RDF	100%RDF
T6	50%N(FYM)+50%RDF	75%RDF
Τ7	25%N(FYM)+75%RDF	50%RDF
T8	50%N(WCS)+50%RDF	75% RDF
Т9	25%N(WCS)+75% RDF	50%RDF
T10	50%N(GM)+50%RDF	75%RDF
T11	25%N(GM)+75% RDF	50%RDF
T12	Farmer's Practice urea@ 50	Farmer's Practice
	kg ha-1	urea@ 50 kg ha-1

Treatment Details

3. RESULTS AND DESCUSSION

Yield and system productivity : It is revealed that application of NPK either through inorganic fertilizers or in combination with organic manures/crop residue/green manure, significantly increased the yields of soybean, wheat and soybean grain equivalent yield over control. Grain and fodder/straw yield of soybean and wheat increased significantly with the increase in NPK levels From 50 to 100% (Table 1). The maximum grain yield of soybean and wheat and that of the system in terms of soybean grain equivalent yield was recorded under T5(100% RDF in *Kharif* and *Rabi*) which was at par with T6(50%N through FYM+50% RDF followed by 75% RDF during *Rabi*)

The soybean grain equivalent yield in respect of the system in T5 was significantly superior over the rest of the treatments except T6.Amongst sources of organics substitution of 50% N through FYM recorded significantly higher system productivity (5458 kg ha⁻¹)in terms of soybean grain equivalent yield as compared to 25% N substitution rate. The omission of chemical fertilizers and organic manures continuously for the last 32 years resulted in low yield of both the crops due to continuous mining of nutrients. The integrated use of chemical fertilizers with organics viz, FYM, green manure and wheat cut straw might have added huge quantity of organic matter in soil that resulted in higher grain yields. This could be ascribed to the contribution from annual use of organics that improved that improved physic-chemical properties of soil and increased availability of plant nutrients.

 Table 1: Grain, fodder/ straw yield of soybean, wheat and grain equivalence of soybean.

Treatment	Soybean (kg ha ⁻¹)		Wh (kg l	ha ⁻¹)	Soybean equivalent yield(kg ha ⁻¹)	SYI
	Grain	fodder	Grain	Straw		
T1	1624	1985	664	856	1996	0.16
T2	2346	2919	2695	3465	3855	0.30
T3	2606	3078	3369	4007	4492	0.46
T4	2687	3133	3270	4068	4518	0.48
T5	3353	4354	4187	5173	5698	0.69
T6	3213	4051	4009	4956	5458	0.65
T7	2944	3704	3033	4007	4643	0.44
T8	2507	3252	3084	3880	4234	0.48
Т9	2469	3117	2846	3598	4062	0.44
T10	2625	3371	3268	4122	4456	0.56
T11	2511	3320	3023	3761	4204	0.51
T12	1908	2457	1843	2251	2940	0.21
Mean	2566	3229	2941	3678	4213	-
S.Em+	192.64	168.24	223.71	205.59	168.67	-
C.D at 5%	554.26	484.06	643.66	591.52	485.29	-
CV%	15.01	10.42	15.21	11.17	8.01	-

Total nutrient uptake:

The data in respect of nutrient uptake are presented in table 2 and 3. The nutrient uptake study revealed that, the total

nitrogen uptake (210 kg ha⁻¹)total phosphorous uptake (35 kg ha⁻¹)total potassium uptake (90 kg ha⁻¹)of soybean was recorded significantly in the treatment T5 (100% recommended NPK dose through fertilizers)which was at par with T6.while in case of wheat total nitrogen uptake (90 kg ha⁻¹)total phosphorous uptake (21 kg ha⁻¹) total potassium uptake (71 kg ha⁻¹)of wheat was recorded significantly in the treatment T5(100% recommended NPK dose through fertilizers)which was at par with T6.

Soil Fertility status:

The data of soil Fertility were studied and are presented in Table 2,3. Thw data on soil Fertility revealed that soil reaction and electrical conductivity wear no significant. organic carbon content was slightly increased in the treatments where organic sources were used and decreased where there was no use of organic sources. in kharif it was high in the treatment T6(0.73%) available nitrogen content (217 kg ha -1) in the treatment T6 p (24 kg ha⁻¹) and k (697 kg ha⁻¹) in the treatment T6 after harvest of *kharif* soybean. in *Rabi* the treatment T6 recorded the highest residual available soil N,P and K (225,25 and 679 kg ha⁻¹) respectively.

 Table 2: Effect of integrated nutrient management on soil fertility and total nutrient uptake of *kharif* soybean.

Treatment	pН	E.C.	0.C	Available			Nutrient		
	(1:2.5)	(dsm-	(%)	nutrients (kg ha			uptake		
		1)			-1)		(kg ha ⁻¹)		
				Ν	Р	K	Ν	Р	K
T1	8.22	0.23	0.53	166	10	542	87	14	37
T2	8.20	0.20	0.63	180	17	656	146	24	60
Т3	8.22	0.30	0.65	185	20	639	161	25	64
T4	8.18	0.23	0.61	198	20	650	166	27	67
T5	8.21	0.23	0.68	209	21	665	210	35	90
T6	8.11	0.21	0.73	217	24	697	202	33	86
T7	8.15	0.21	0.69	199	21	646	186	31	78
T8	8.14	0.22	0.79	205	22	646	157	22	68
Т9	8.13	0.21	0.67	208	19	647	155	22	64
T10	8.12	0.22	0.66	214	23	636	165	24	67
T11	8.12	0.21	0.63	211	22	649	158	24	65
T12	8.13	0.20	0.57	209	13	589	118	16	47
s.Em+	8.18	0.029	0.010	6.27	0.42	6.45	10.05	1.24	2.43
C.D at 5%	NS	NS	0.030	18.03	1.12	18.54	28.91	3.58	7.00
Initial	8.16	0.23	0.63	175	17	632			

Table 3: Effect of integrated nutrient management on soil fertility and total nutrient uptake of Rabi wheat.

Treat ment	рН (1:2.5)	E.C. (dSm- 1)	.C. O.C Sm- (%) 1)		Available nutriments NPK (kg ha ⁻¹)		N upt (1	lutrie take N kg ha ⁻	nt PK ¹)
T1	8.24	0.22	0.52	170	9	537	12	3	10
T2	8.19	0.20	0.63	187	17	651	89	13	43
T3	8.21	0.21	0.64	191	20	635	70	15	53
T4	8.19	0.23	0.61	203	21	642	70	15	54
T5	8.21	0.23	0.67	214	22	670	90	21	71
T6	8.14	0.22	0.72	225	25	679	86	19	67

Journal of Agroecology and Natural Resource Management p-ISSN: 2394-0786, e-ISSN: 2394-0794, Volume 6, Issue 4; July-September, 2019

T7	8.16	0.21	0.68	204	22	638	67	15	53
T8	8.13	0.22	0.65	211	22	640	66	15	50
T9	8.14	0.22	0.66	214	20	642	60	13	46
T10	8.13	0.23	0.65	220	24	631	69	14	52
T11	8.18	0.23	0.67	217	21	644	64	14	48
T12	8.17	0.20	0.60	190	11	585	38	9	29
s.Em+	0.028	0.009	0.01	6.04	0.51	6.66	3.40	0.90	2.13
C.D at	NS	NS	0.03	17.3	1.46	19.1	9.78	2.61	6.14
5%				7		5			
Initial	8.16	0.23	0.63	175	17	632			

 Table 4: Economics of different INM treatments on soybean wheat sequence

Treatment	Gross monetary returns (Rs.ha ⁻¹)	Cost of cultivation (Rs.ha ⁻¹)	Net monetary returns (Rs.ha ⁻¹)	B:C ratio
T1	56898	57189	-291	0.99
T2	110093	67311	42781	1.64
T3	128008	71603	56404	1.79
T4	128798	71569	57229	1.80
T5	162754	76989	85764	2.11
T6	155808	78815	76993	1.98
Τ7	132648	73455	59193	1.81
T8	120982	70155	50827	1.72
Т9	116002	69392	46610	1.67
T10	127291	70889	56402	1.80
T11	120144	69878	50266	1.72
T12	83942	61367	22575	1.37
Mean	120281	69884	50396	1.70
S.Em ⁺	4625.46	-	4625.46	-
C.D at 5%	13308.56	-	13308.56	-
CV%	7.69	-	18.35	-

Economics: Economics of soybean wheat crop sequence under integrated nutrient supply system was computed on the prevailing market prices and are presented in Table 4.The highest gross monetary returns net returns with B:C ratio was recorded in the treatment T6 (50% N through FYM +50 %RDF followed by 75% RDF during Rabi).

4. CONCLUSION

In soybean –wheat sequences the maximum productivity was obtained under the application of 100% RDF in *kharif* and *rabi* which was at par with 50%N through FYM +50%RDF followed by 75% RDF during *rabi*. Gross and net returns as well a B:C ratio were noted maximum in the same treatments. Continuous application of organic manure in conjunction with inorganic fertilizers improved organic carbon and available nitrogen in the soil.

LITERATURECITED

- Albiach, R, Canet.R, Pomares. F, Ingelmo. F,2000. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil.Biores tech. 2000;75:43-48.
- [2] Bobade, G.N.Deshmukh, R.N., Khandalkar, D.M., Turankar, V.L.19 98 Nutrient management of soybean (Glycin max) based cropping system. Indian J of Agronomy. 1998;43(3):390-392.
- [3] Joshi, O.P.,Billore, S.D.,Ramesh, A.2000 Integrated micronutrient managementin soybean J Oilseed Res.2000:17:370-372.
- [4] Prasad, R.1996 Cropping system and sustainability of agriculture. Indian farming.1996:46(8):39-45.